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Abstract. The evolution of the octupole excitation is investigated along the Th isotope chain. The isotope
226Th results to be close to the critical point (square-well potential in the octupole amplitude β3).

PACS. 21.60.Ev Collective models

Evidence of phase transition between spherical and ax-
ially deformed shape —and examples of the critical-point
symmetry X(5) introduced by Iachello [1]— have been re-
cently found [2–4] in two regions of nuclei: around 104Mo
(Z =42, N =62) and around 152Sm (Z =62, N =90). We
now observe that a similar transition takes place also in
the region of Z = 90 (Th isotopes), as shown in fig. 1a.
Here, however, octupole excitations of very low energy are
also apparent (fig. 1b). Therefore, in investigating the evo-
lution of nuclear shapes in this region, we cannot avoid to
take into account at the same time the quadrupole and
the octupole modes. This work is in progress [5]. Here, we
limit the discussion to a subset of data, concerning the
evolution of the octupole mode in nuclei which already
possess a stable quadrupole deformation.

Also in this limited field, one can meet a variety of
situations: at the larger values of N , the octupole vibra-
tion is almost decoupled from the quadrupole modes, and
gives rise to bands with Kπ = 0−, 1−, 2−, 3− (presum-
ably coupled together by the Coriolis forces), at excita-
tion energies not far from those of the β and γ quadrupole
bands. When N decreases, the Kπ = 0− band (and only
this one) moves down, and tends to merge with the g.s.
band into an alternate-parity band, similar to those of
asymmetric diatomic molecules. At this limit, the octupole
and quadrupole modes appear to be coupled together, be-
ing constrained to maintain a common symmetry axis,
while the Coriolis coupling of the axial octupole mode
with non-axial ones should be weaker, due to the large
energy denominator. We can relate this behavior with an
evolution of the potential for the amplitude β3 of axial
octupole deformation, from a shape with two symmetric
minima to a single minimum at β3 = 0. A “flat” shape
—as for the X(5) potential of the quadrupole— can be
expected at a critical point in between. Actually, the HFB-
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Fig. 1. a): Ratios E(4+)/E(2+) for isotopes of Th (triangles)
and Ra (circles); dotted line: critical X(5) value. b): E(1−) for
Th (triangles) and Ra (circles), compared with E(1−2 ) (open
symbols) or E(2−) (full symbol), for Th (squares) or Ra (stars).
Data are from the NNDC data base [6].

Cranking model calculations by Nazarewicz and cowork-
ers [7] show that all these situations can be found in dif-
ferent Th isotopes.

There are several theoretical frames to treat at the
same time the quadrupole and octupole degrees of free-
dom. An algebraic scheme is given by the spdf interacting-
boson model [8–10]. In the geometrical model (more suit-
able for the present purposes) a completely consistent
treatment in the full model space is only provided by the
theory of Donner and Greiner [11–13]. In alternative, a
number of simplified models, usually limited to axial oc-
tupole vibrations, have been proposed [13–17].

In the model we are going to use here, we assume:

i) Permanent quadrupole deformation β̄2;
ii) Amplitude of β2 vibrations (around β̄2) and of γ vi-

brations (around zero) negligible in comparison to β̄2;
iii) Axial octupole vibrations, in a proper potential well;
iv) Amplitude of non-axial octupole vibrations (K �= 0)

negligible in comparison to β̄2;
v) Rotation-vibration wave function Ψ = ψ(β3) DJ∗

M,0,
with ψ(−β3) = (−)Jψ(β3).
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Fig. 2. Level scheme of 226Th vs. model predictions (b = 1.73).

With the new variable x =
√

2B3/B2(β3/β̄2) —where
Bλ is the inertia parameter [12]— and ε = (1/�

2)B2 β̄2
2 E,

we obtain the Schrödinger equation

d2ψ

dx2
+

2x
1 + x2

dψ

dx
+

[
ε − J(J + 1)

6(1 + x2)
− V (x)

]
ψ = 0 ,

which, for V (x) = 0, is formally equivalent to that of
Oblate spheroidal wave functions [18] with m = 0, c2 = ε
and λ = J(J +1)/6− ε. The critical point corresponds to
V (x) = 0 for |x| < b and = +∞ for |x| > b, i.e. c = 0 and
boundary conditions ψ(±b) = 0. Obviously, in this case
the results depend on the parameter b, that can be ad-
justed to reproduce, e.g., the position of the first 1− level.

At this point, a word of caution is obviously in order.
Quantizing the kinetic-energy operator in non-Cartesian
coordinates is a difficult (and insecure) task. Here, we are
discussing a model that can find its justification in the
(possible) agreement with experimental data. However:

i) In the low-amplitude limit, our expression coin-
cides with the corresponding limit of Donner and
Greiner [12];

ii) the only relevant assumption concerns the variable mo-
ment of inertia J1 = 3B2β̄

2
2 + 6B3β

2
3 , while other de-

tails of the model have practically no effect in the re-
gion of interest.

As we have seen, for the validity of the model one needs
a permanent quadrupole deformation —i.e. E(4+)/E(2+)
not far from 3.3)— and axial (K =0) octupole excitation
well below those with K �=0 —i.e. E(1−2 ) (and E(2−)) �
E(1−). A glance to the two sections of fig. 1 shows that
these two conditions are fulfilled at the same time only in
a very limited interval of values of N , so that our analysis
must be limited to the two isotopes 226,228Th.

Both the positive- and the negative-parity parts of the
g.s. band of 226Th (fig. 2) result to be in rather good
agreement with the model predictions at the critical point,
with b = 1.73 (fit on the lowest 1− level). As shown in
fig. 3a, the overall agreement is apparently improved with
b = 1.87 (fit on the 20+ level), at the expense of a slight
deviation between the theoretical and the experimental

Fig. 3. Experimental data for 226Th and 228Th (circles:
positive-parity levels; triangles: negative parity) compared with
model predictions, fitted on the 1− level. Full line: critical po-
tential; dashed line: harmonic potential; dot-dashed line: rigid
rotor. The dotted line in a) corresponds to the critical-potential
fit on the 20+ level.

Table 1. Ratios of reduced strengths for E1 transitions coming
from the same level of 226Th. Theoretical values are calculated
assuming [11] Mµ(E1) ∝ β2β3Y1,µ.

Trans. 1 Trans. 2 Bi→f1(E1)/Bi→f2(E1)
Jπ

i ⇒ Jπ
f1 ⇒ Jπ

f2 Theor. Experimental

1− E1 0+ E1 2+ 0.47 0.54 ± 0.05
3− E1 2+ E1 4+ 0.65 0.99 ± 0.25
2+
2 E1 1− E1 3− 0.63 0.60 ± 0.18

value for the 1− level. For the 0+
2 and 2+

2 levels of the s = 2
band the agreement is not so good, but not substantially
worse than for “good” X(5) nuclei as 104Mo and 150Nd.
Branching ratios for the E1 transitions (table 1) provide
a further test of the model.

At lower values of N , the assumption of permanent
quadrupole deformation appears to fail already for 224Th
(N = 134) and, quite surprisingly, the positive part of the
g.s. band of 224Th —and also of 224Ra— follows rather
well the pattern typical of X(5) symmetry [5]. At the op-
posite side, the level scheme of 228Th (fig. 3b) is, at least
up to J = 16, in rough agreement with the model predic-
tions for a harmonic potential, thus confirming the validity
of the basic assumptions of our model.
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